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1 Introduction

A major area of computational fluid dynamics is the treatment of material mixtures. In

this article we will discuss some of the mathematical consequences of multiple material mixture

models, in particular models that are “close” to single material formulations in the sense that

the model is described by a single mixture pressure, velocity, and sound speed. Such models

are useful due to their well-posedness, and their ability to be fitted into existing hydrocode

implementations. The most popular of these is the pressure-temperature-velocity equilibrium

model, which assumes that the material components in a computational cell are phase separated

and in pressure and temperature equilibrium with a common velocity. Traditionally this model

is referred to as a pressure-temperature (P-T) equilibrium model, with velocity equilibrium

understood. However for time scales dominated by shock wave interactions, the P-T equilibrium

assumption tends to be overly diffusive, and mixture models that relax this assumption are

needed. In this article will discuss the mathematical structure of models obtained by relaxing

the requirement of temperature equilibrium, while maintaining phase separation and pressure

and temperature equilibrium.
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Computational treatments for multiple material flows can be roughly broken up into three

categories, interface treatments that attempt to resolve the material separations by explicitly

tracking the boundaries between separate components (such as explicit geometric front tracking

[5, 9, 10, 11, 12, 13, 14, 17] or level set methods [2, 22, 23, 34]), mixed cell treatments for the

interactions between materials [4], and hybrid treatments such as the volume of fluid method

[20, 26, 38, 39] that use both mixed cell models together with reconstructions of the interfaces

between materials. Ideally all three methods can be combined into one computational system to

provide both the high fidelity interface representation provided by tracking with the robustness

of the mixed cell treatments.

The choice of a mixed cell model is extremely problem dependent, and must be based on

the length and time scales appropriate for a given application. For example the assumption

of pressure-temperature-velocity equilibrium for a mixture might be based on the following

assumptions:

1) The microstructure of the mixture consists of volumetrically distinct components.

2) Material components are separated by interfaces/contact discontinuities across which

pressure and the interfacial normal component of velocity are continuous.

3) Surface tension between components in the microstructure is negligible (no capillarity

due to the microstructure).

4) Shear across the microstructure interface is negligible (common velocity). The assump-

tion basically asserts that the microstructure consists of material components that are “well

mixed”, either as separate blobs of material, or convoluted interfaces between the components.

5) The application time scales are sufficiently long that the components have time to come

into thermal equilibrium due to un-modeled processes such as thermal conduction (common

temperature).

Our main interest in this article is to investigate the mathematical structure of models that

relax this last condition, so that the microscopically separated components are not required to

be in temperature equilibrium. More complicated models that allow multiple pressures and/or

velocities in the microstructure are also of great interest but are beyond the scope of the

models considered here. One of the aims for this set of models are to produce equations that

are “close”, to the P-T equilibrium model and thus are suitable to be retro-fitting into existing

P-T equilibrium code implementations.

The group of Saurel et.al. has published an extensive set of articles describing two compo-

nent mixtures. These works include Godunov schemes for pressure-relaxation models similar to

the Baer-Nunziato [3] multiphase detonation model [27, 28], discretized forms of this model [1],

extensions to turbulent flows [28, 30], applications to heterogeneous explosives [6], incorporation

of capillarity effects in the model [24], evaporative front treatments [16], shock jump relations

[8, 31], relaxation-projection schemes [25, 29], metastable fluid models [32], and efficient solu-

tion schemes for these type models [33]. In all of these models, the general limit of the flow

in the case of infinite relaxation is a single pressure model with possibly multiple component

temperatures. In many cases the relaxation parameters are treated as numerical “knobs”, and

often (but not always) the solution of interest is the limit under infinite relaxation rates.

As we will see, such single pressure models have an infinite set of possible closure relations,

each corresponding to possibly different flow physics of the mixture. We will show that four
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basic models in common usage can be included in this class, pressure-temperature equilibrium,

volume-temperature equilibrium, entropy advection (thermal isolation), and volume fraction

advection (uniform strain or uniform compression). Additional models can be built out of this

set by assuming the flow has the nature of a “mixture of mixtures”, for example components are

themselves mixtures of materials in pressure-temperature or volume-temperature equilibrium.

We will also examine what consequences the flow model assumption has on the shock wave

structure of the material. This is non-trivial since generally the full model is not in conserva-

tive form and consequently the Rankine-Hugoniot equation for shocks is under-determined. As

an example we will discuss a possible application of such mixture models to radiation hydrody-

namics. Another major goal of this work will be to treat the multiple material mixture models

for general equations of state, including the possibilty of phases that undergo physical phase

changes.

2 Thermodynamic Preliminaries

The notation we use is that of Menikoff and Plohr [18]. The introduction to book of Israel

[37] by A. S. Wightman also is very helpful in the thermodynamic discussion. These articles

contain a number of useful thermodynamic identities that we will use freely. We assume that

each material in the mixture is governed by a separate thermodynamically consistent equation

of state, specifically we assume the existence of a C1, piecewise C2, convex specific internal

energy e = e(V, S) for each species (in subsequent sections we will distinguish the separate

specific internal energy functions by a subscript for each material, here we suppress the subscript

for clarity of notion) as a function of specific volume V = 1
ρ

(ρ is the mass density) and specific

entropy S in the interior of a convex domain (V, S) ∈ ΩV,S ⊆ {(V, S) |V > 0, S ≥ 0}, and that

e(V, S) is lower semi-continuous at the boundary ∂ΩV,S. Since the specific internal energy is

convex, lower semi-continuity of e is equivalent to the statement that at any point on ∂ΩV,S,

e is either continuous or blows up as it approaches the boundary (see Niculescu and Persson

[21]). The temperature and pressure of the material is given by the first law of thermodynamics

relation:

de = TdS − PdV. (1)

Thus T = ∂e
∂S

∣

∣

V
and P = − ∂e

∂V

∣

∣

S
. In addition, we assume that for fixed specific volume, the

specific internal energy is a monotone increasing function of specific entropy, thus T ≥ 0 and

we can invert the relation e = e(V, S) to obtain a C1 concave entropy function S(V, e) with

convex domain ΩV,e. Note that the Hessians of e = e(V, S) and S = S(V, e) are related by the

formula:
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Since strict convexity is equivalent to the statement that the Hessian matrix is positive definite,

it is clear that S is strictly concave at (V, e (V, S)) if and only if e is strictly convex at (V, S(V, e)).

The equivalence of the concavity of S(V, e) and the convexity of e(V, S) follows immediately
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from monotonicity of the entropy/energy relation for fixed specific volume, since for 0 < α < 1,

e ((1 − α)V0 + αV0, (1 − α)S0 + αS1) ≤ (1 − α) e (V0, S0) + αe (V1, S1) ,

if and only if

(1 − α)S (V0, e0) + αS (V1, e1) ≤ S ((1 − α)V0 + αV0, (1 − α) e0 + αe1) ,

where e0 = e(V0, S0) and e1 = e(V1, S1).

The sound speed c, Grüneisen exponent Γ, and the specific heat at constant volume CV

are defined by
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(3)

In regions where e(V, S) is twice differentiable, convexity is equivalent to the conditions:

ρ2c2 > 0,

ρ2T 2
( c2

CV T
− Γ2

)

> 0,

T

CV

> 0.

(4)

The relation between pressure and temperature, and specific volume and specific entropy

can be inverted via the Legendre transformation:

G(P, T ) = inf
(V,S)∈ΩV,S

{e(V, S) + PV − TS} . (5)

The quantity G(P, T ) is the Gibb’s free energy with convex domain

ΩP,T = {(P, T )|G(P, T ) > −∞} .

Similarly one can invert the relation between entropy and temperature to derive the Helmholtz

free energy:

F (V, T ) = inf
S|(V,S)∈ΩV,S

{e(V, S) − TS} , (6)

with domain

ΩV,T = {(V, T )|F (V, T ) > −∞} .

For a convex C1 function e(V, S), it can be shown (see [21] again) that G(P, T ) is strictly

concave, upper semi-continuous (convex/concave functions are always continuous in the interior

of their domains), piecewise C1, and that at locations where G(P, T ) is differentiable, it satisfies

the relation:

dG = V dP − SdT. (7)
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Furthermore the slope of a curve along which the partials of G(P, T ) jump satisfy the

Clausius-Clapeyron equation:
dP

dT

∣

∣

∣

∣

coex

=
∆S

∆V
. (8)

Pressures and temperatures where the Gibb’s free energy derivatives jump correspond to co-

existence regions where the material undergoes a phase transition. In equation (8), ∆S and

∆V denote the change in the pure phase specific entropy and specific volume across the phase

transition.

Points on the coexistence curve correspond to regions of non-strict convexity for the specific

internal energy. In particular the Gibb’s free energy is continuous across a coexistence curve,

so that at a point (P, T ) on such a curve we have:

−P∆V + T∆S = ∆e. (9)

As before ∆e, ∆V, and ∆S denote the change in the corresponding quantity across the coex-

istence curve. Equation (8) follows by differentiating the expression Gl(P, T ) = Gg(P, T ) with

respect to temperature along the coexistence curve, where the subscripts denote the Gibb’s free

energies on either side of the curve (often regarded as a liquid and gaseos phase).

The key point in the above discussion is the equivalence of the equation of state formula in

terms of a C1 piecewise C2 convex specific internal energy as a function of specific volume and

specific entropy and the formulation of a piecewise C2 strictly concave Gibb’s free energy as

a function of pressure and temperature (note the Gibb’s free energy may not be continuously

differentiable although left and right partial derivatives always exist). Indeed given such a

Gibb’s free energy, the specific internal energy is recovered via the Legendre transform:

e (V, S) = sup
(P,T )∈ΩP,T

{G (P, T ) − PV + TS} . (10)

It is precisely the assumption of convexity and lower semi-continuity of e(V, S) or strict concavity

and upper semi-continuity of G(P, T ) that implies the invertability of the Legendre transform

between the specific internal and Gibb’s free energies (again see reference [21] for details).

We finish this section by noting that the specific entropy relation as a function of specific

volume and specific internal energy can also be inverted. Indeed, since

dS =
1

T
de +

P

T
dV, (11)

we can form the Legendre transform:
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T
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T
. (12)

We can then recover S(V, e) using the inverse Legendre transform:

S(V, e) = inf
(P,T )∈ΩP,T

{

e + PV − G(P, T )

T

}

. (13)
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These relations are important in establishing the uniqueness of the pressure-temperature equi-

librium solution below.

For later use, we also define the isothermal compressibility KT , the isentropic compress-

ibility KS, the coefficient of thermal expansion β, and the specific heat at constant pressure

CP by the formulas:
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. (14)

In appendix A of Menikoff and Plohr [18] a variety of useful relations between these quantities

are listed. In particular the relations:

KS

KT

= 1 −
β2V T

CP KT

=
CV

CP

,
∂S

∂V

∣

∣

∣

∣

T

=
β

KT

Γ =
βV

CV KT

, KS =
1

ρc2
(15)

will prove useful in the sequel. The thermodynamic stability condition can be expressed in

terms of the compressibilities and specific heats as:

CP ≥ CV ≥ 0 or KT ≥ KS ≥ 0. (16)

3 Equilibrium Mixtures

Equilibrium mixtures can be characterized by the existence of a thermodynamic free en-

ergy as a function of two thermodynamic variables and parameterized by the component mass

fractions. Such free energies might include a Gibb’s free energy as a function of pressure and

temperature or a Helmholtz free energy as a function of temperature and specific volume. The

existence of a free energy means that the flow has a well defined temperature and entropy. Since

mass fraction is advected with a non-reacting flow (an easy consequence of conservation of com-

ponnet mass), the thermodynamics of the mixture is essentially the same as described in section

2 in fluid elements that move with the flow. In particular the flow has a single acoustic sound

speed. The assumption of an equilibrium mixture implies that the time scales of the process

that establish the equilibrium (e.g. acoustic interactions or thermal conduction) are short rela-

tive to the dynamic time scales of interest. This assumption may often be inappropriate, so the

use of equilibrium equation of state models are problem dependent. Nevertheless such models

are very popular in application codes, and carry the benefit of considerable simplicity compared

with non-equilibrium models.

In general the free energy of a mixture can be a complicated function of all of the component

material properties (see for example [4]). In practice however, many applications only consider

mixtures whose free energies can be described simply in terms of the free energies of the separate

components, usually as a mass or volume average of the component free energies. Often such

a formulation can be interpreted as a linearization with respect to mass fractions of a more

complex non-linear function of the component free energies. In this section we describe two of

the most popular equilibrium models in common usage.

3.1 Molecular Mixtures

The volume separated mix models to be described below allow for components to consist

of molecularly mixed subcomponents. Molecular mixing is generally appropriate for gases or
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miscible fluids and assume that mass diffusion occurs quickly compared to the flow dynamics

and are generally useful for relatively slow flows. In particular shock dynamic processes are

likely to violate the assumption of volume equilibrium used in this model. A mixture is said

to be molecularly mixed if all components of the mixture occupy the same volume element

simultaneously and are in temperature equilibrium with the mixture. Mathematically, this

implies that all components have the same temperature, T , and that the mass density of a

component is related to the mass density of the mixture via the relation ρk = µkρ where µk

is the mass fraction of species k, 1 ≤ k ≤ N for a mixture of N pure material components.

In terms of specific volumes, this relation becomes V = µkVk. If we further assume that

each component satisfies its pure material equation of state relative to its specific volume and

temperature, then additivity of energy implies that the specific internal energy of the mixture

is related to the specific internal energies of the components by the equation:

e(V, S, ~µ) =

N
∑

k=1

µkek(Vk, Sk),

µkVk = V, Tk(Vk, Sk) = T, S =

N
∑

k=1

µkSk.

(17)

Obviously the thermodynamic domain of the mixture is a subset of the intersection of the

domains of all of the components. Equation (17) can be expressed more directly in terms of

additivity of the Helmholz free energy:

F (V, T, ~µ) =

N
∑

k=1

µkFk(Vk, T ). (18)

It is a straightforward to show the two formulations are equivalent (although the equivalence

even for phase transitions is slightly more complicated to prove) and that the mixture satisfies

the thermodynamic relations:

de = TdS − PdV +

N
∑

k=1

Gkdµk,

dF = −SdT − PdV +

N
∑

k=1

Gkdµk,

µkVk = V, P =
N
∑

k=1

Pk(Vk, T ), S =
N
∑

k=1

µkSk(Vk, T ), Gk = Gk(Pk, T ).

(19)

Here Gk is the Gibb’s free energy of the k-th component. We note that here and in the sequel

below we ignore the entropy of mixing, so that the total specific entropy is the mass average

of the component values. This assumption is somewhat unrealistic in that it implies a certain

unphysical reversability of the mixing process. For a more complete description of this issue

see the book of Bird, Stewart, and Lightfoot [4].

In practice, the mixture equation of state will likely be computed by solving a system

of equations. For example in the molecular mix case, given a specific internal energy ek and

specific volume Vk we would solve for the mixture pressure and temperature via one or the
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other of the equivalent systems:














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.

(20)

Here CV = T ∂S
∂T

∣

∣

V
= ∂e

∂T

∣

∣

V
is the specific heat at constant volume, for mixtures these deriva-

tives are also taken at constant mass fraction.

Thermodynamic derivatives of the mixture can then be computed in terms of the compo-

nent values as follows:
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(21)

Equation (21) can then be used to compute the sound speed and Grüneisen exponents of the

mixture:

Γ =
V β

CV KT

=
1

CV

N
∑

k=1

µk

Vkβk

KT,k

=
1

CV

N
∑

k=1

µkCV,kΓk, (22)

ρc2 =
1

KS

=
1

KT

+ Γ
βT

KT

=
1

KT

+ Γ2 CV T

V
⇒ (23)

c2 =

N
∑

k=1

µkc2
k +

N
∑

k=1

µk

(

Γ2 − Γ2
k

)

CV,kT ,

CP = CV +
β2V T

KT

. (24)

From the formulas for the mixture isothermal compressibility and specific heat at constant

volume, we see that the sound speed of the mixture is real if all of the components satisfy the

thermodynamic stability constraints separately. It is also useful to derive a relation between

changes in mixture pressure, mixture entropy, mixture specific volume, and mass fractions.

Using equation (17) or (18) and the above identities, we find that:

dP = −ρ2c2dV + ρΓTdS + ρ2c2
N
∑

k=1

∂Gk

∂P

∣

∣

∣

∣

S,~µ

dµk. (25)

The wave structure of the mixture is governed by the fundamental derivative of gas dy-

namics [35]:

G =
1

2

V 2

ρc2

∂2P

∂V 2

∣

∣

∣

∣

S,~µ

= −
1

2

(ρc2)2

V

∂2V

∂P 2

∣

∣

∣

∣

S,~µ

. (26)

Shock waves are compressive in domains of thermodynamic phase space with G > 0, while

shocks that encompass domains with G < 0 are expansive. A bit of algebra shows that the
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fundamental derivative of gas dynamics can be written in terms of the Helmholtz free energy

as:

G = −
1

2

V 3

c2

[

∂3F

∂V 3
− 3

ΓT

V

∂3F

∂V 2∂T
+ 3
(ΓT

V

)2 ∂3F

∂V ∂T 2
−
(ΓT

V

)3 ∂3F

∂T 3

]

. (27)

It is an open question as to whether mixtures of materials with positive fundamental derivatives

have positive fundamental derivatives, although to the authors’ knowledge no counter-examples

have been demonstrated.

3.2 Pressure-Temperature Equilibrium

In addition to molecular mix, another popular assumption for well mixed compositions

is pressure temperature equilibrium, in which the components occupy disjoint volumes at the

same temperature and pressure inside the microstructure. In this model, the volume fractions

αk, mass fractions, component densities and specific volumes, total density, and total specific

volume are related by the formulas:

αkρk = µkρ, or αkV = µkVk. (28)

The specific internal energy of the mixture is then given by:

e(V, S, ~µ) =
N
∑

k=1

µkek(Vk, Sk), (29)

Pk(Vk, Sk) = P, Tk(Vk, Sk) = T, V =
N
∑

k=1

µkVk, S =
N
∑

k=1

µkSk, (30)

or more directly in terms of the Gibb’s free energies:

G(P, T, ~µ) =

N
∑

k=1

µkGk(P, T ). (31)

As with the molecular mix, most often, one would evaluate the P-T equilibrium equation of

state using a numerical solution of a system of equations, in this case:

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
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(32)

Thermodynamic derivatives of the mixture can then be found using the formulas:
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µkCP,k, αk=µk

Vk

V
, KT =

N
∑

k=1

αkKT,k, β =

N
∑

k=1

αkβk,

1

Γ
= −βT +

KT CP

βV
, CV = CP −

β2V T

KT

,

−
1

ρ2c2
= −V KT +

(βV )
2
T

CP

,
Γ2T

c2
=

1

CV

−
1

CP

.

(33)

It is immediately obvious that the mixture specific heat at constant pressure and isothermal

compressibility are non-negative if all of the component values are non-negative. The non-

negativity of the specific heat at constant volume and the square of the sound speed are not
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so obvious however. In fact this follows from general principles since the mixture Gibb’s free

energy is a convex (mass weighted) average of the concave functions Gk(P, T ) and hence is a

concave function of pressure and temperature for fixed mass fractions. Moreover we have the

stronger statement:

CV ≥

N
∑

k=1

µkCV,k. (34)

Indeed:

CV = CP −
β2V T

KT

=

N
∑

k=1

µkCV,k +

N
∑

k=1

µk

(βkVk)
2
T

VkKT,k

−
(βV )

2
T

V KT

. (35)

Thus inequality (34) is equivalent to:

N
∑

k=1

µk

(βkVk)
2

VkKT,k

≥
(βV )

2

V KT

. (36)

Since V KT =
N
∑

k=1

µkVkKT,k and βV =
N
∑

k=1

µkβkVk, inequality (36) can be rewritten as:

∣

∣

∣

∣

∣

N
∑

k=1

µk(VkKT,k)
1

2

βkVk

(VkKT,k)
1

2

∣

∣

∣

∣

∣

≤

( N
∑

k=1

µkVkKT,k

)
1

2

( N
∑

k=1

µk

(βkVk)2

VkKT,k

)
1

2

,

which is a consequence of Schwartz’s inequality.

The pressure, specific volume, entropy, and mass fraction evolution are related by the

equation:

dP = −ρ2c2dV + ρΓTdS + ρ2c2
N
∑

k=1

∂Gk

∂P

∣

∣

∣

∣

S,~µ

dµk. (37)

We note that (37) is formally identical to (25), however for P-T equilibrium we compute:

ρ2c2 ∂Gk

∂P

∣

∣

∣

∣

S,~µ

= ρ2c2

[

Vk − Sk

∂T

∂P

∣

∣

∣

∣

S,~µ

]

= ρ2c2Vk + Sk

∂T

∂V

∣

∣

∣

∣

S,~µ

,

ρ2c2 ∂Gk

∂P

∣

∣

∣

∣

ρ2c2

= −
∂Gk

∂V

∣

∣

∣

∣

S,~µ

= ρ2c2Vk − ρΓTSk.

(38)

Finally we note that molecular mix is generally a “stronger” mix than P-T equilibrium, in the

sense that it has a higher entropy at a given mixture pressure and temperature. Indeed at a

given mixture pressure and temperature, the specific entropies are given by:

SPT =

N
∑

k=1

µkSk (P, T ), P = Pk,

SMM =

N
∑

k=1

µkSk (Pk, T ), P =

N
∑

k=1

Pk.

(39)

If we assume non-negative pressures for all of the components, then for molecular mix Pk ≤ P

and since ∂Sk

∂Pk

∣

∣

∣

T
= −βkVk = −ΓkCV,kKT,k, we have that for mixtures of components with

non-negative coefficients of thermal expansion (equivalently non-negative Grüneisen exponents)

SMM ≥ SPT . Physically, molecular mix might be interpreted as a solution of all components
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into a common medium, while P-T equilibrium mixtures might be thought of an emulsion of

the components.

We can also compute the fundamental derivative for a P-T equilibrium mixture in terms

of derivatives of the Gibb’s free energy:

G =
1

2

(ρc2)3

c2

[

∂3G

∂P 3
+ 3

βTV

CP

∂3G

∂P 2∂T
+ 3
(βTV

CP

)2 ∂3G

∂P∂T 2
+
(βTV

CP

)3 ∂3G

∂T 3

]

.

As for the molecular mix case, it is an open question whether P-T equilibrium mixtures of

components with positive fundamental derivatives also have a positive fundamental derivative.

One should note that while for a pure material, the fundamental derivative can be computed

using only incomplete equation of state information:

G =
1

2
V

[

∂P

∂e

∣

∣

∣

∣

V

+
(PV

c

)2 ∂2P

∂e2

∣

∣

∣

∣

V

− 2
(PV

c

)(V

c

) ∂2P

∂e∂V
+
(V

c

)2 ∂2P

∂V 2

∣

∣

∣

∣

e

]

,

ρ2c2 =
c2

V 2
= P

∂P

∂e

∣

∣

∣

∣

V

−
∂P

∂V

∣

∣

∣

∣

e

,

(40)

the pressure-temperature equilibrium mixture fundamental derivative depends on the complete

equations of state of all of the components.

4 Basic Pressure-Velocity equilibrium Mix Model

We will now examine classes of hydrodynamic models that can be used to describe non-

temperature equilibrium flows that maintain a single mixture pressure and velocity. In smooth

flow regions each species’ entropy is advected by the common velocity and modified by inter-

actions via P-V work between materials. Following the notation of Drew and Passman [7], the

system is written:

∂αkρk

∂t
+ ∇ • (αkρku) = αkρkRk = ρµkRk,

∂ρu

∂t
+ ∇ • (ρu ⊗ u) + ∇P = ρb,

∂ρ
(

e + 1
2u2
)

∂t
+ ∇ • ρu

(

e +
1

2
u2
)

+ ∇ • Pu = ρb • u + ρq,

Tk

DSk

Dt
=

Dek

Dt
+ P

DVk

Dt
= Qk.

(41)

Here αk is the k-th material species volume fraction, 1 ≤ k ≤ N , ρk is the component micro-

density of this species, u is the fluid velocity, ρ =
N
∑

k=1

αkρk is the total fluid density, P is the

equilibrium pressure, b is a body force per unit mass, Qk is the heat production in species

k due to interactions between species and external sources, q is the total heat production for

the mixture due to interactions and external sources, µk = αkρk/ρ, Tk and Sk are the mass

fraction, temperature, and specific entropy of species k, and D
Dt

= ∂
∂t

+ u • ∇ is the total

derivation operator. We allow for the production or destruction of a particular species via the

reaction source terms αkρkRk. For simplicity we assume the flow is saturated,
N
∑

k=1

αk = 1
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and that total mass is conserved so that
N
∑

k=1

µkRk = 0. The first three equations correspond

to the conservation of individual material mass, total momentum, and total energy, while the

last equation is the advection law for the separate specific entropies. The internal energies,

temperatures, and specific entropies are related by separate thermodynamic equations of state

described in Section 2.

More generally we can assume that each species is either a miscible (molecularly mixed)

mixture of subcomponent materials or an immiscible pressure-temperature mixture of subcom-

ponents. This extension is straightforward; the species micro-density is then a combination

ρk =

Nk
∑

i=1

αkiρki, (42)

where αki is the sub-volume fraction of a subcomponent with respect to the volume occupied

by the mixture. The sub-mass fractions are defined by µkiρk = αkiρki. The conservation of

subcomponent mass implies:

∂αkαkiρki

∂t
+ ∇ • (αkαkiρkiu) = αkαkiρkiRki. (43)

The source term for the mixture Rk =
Nk
∑

i=1

µkiRki is then the sum of the sources for the sub-

components of the mixture. It is important to note that the subcomponent volume fractions

are constitutive properties of the subcomponent state (i.e., given by an equation of state as

described in Section 3), while the component volume fractions require additional dynamical

equations to describe their evolution.

Physically, system (41) is most reasonable in the case of weak shocks, say as measured

by the pure material normal shock mach numbers. The hypothesis of pressure and velocity

equilibrium is based on the assumption that the microstructure is “well-mixed”, i.e., the subgrid

scale structure of a mixed region is either molecularly mixed or has sufficiently convoluted

subgrid interfaces to justify a mixed cell treatment with a single common pressure and velocity.

Generally speaking, this means that the subgrid structure is likely composed of large numbers

of droplets of individual materials. Treatments for mixtures that experience strong shocks, or

for which the subgrid scale is not well mixed, will almost certainly require multiple species

velocities and pressures. A discussion of such models is not the intent of this research note.

System (41) can be reformulated in a variety of ways. Summing the individual continuity

equations over all materials we obtain the continuity equation for total mass:

∂ρ

∂t
+ ∇ • ρu =

N
∑

k=1

αkρkRk = 0, (44)

which implies that mass fractions are advected with the component mass source:

Dµk

Dt
= µkRk. (45)

For mixture components, the subcomponent mass fractions are advected by the equations:

Dµkµki

Dt
= µkiµkRki,

Dµki

Dt
= µki (Rki − Rk) , i = 1, · · · , Nk. (46)
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If we take the individual material continuity equations and expand the derivatives, we

obtain:

αk

Dρk

Dt
+ ρk

Dαk

Dt
+ αkρk∇ • u = αkρkRk,

Dαk

Dt
= αk

[

1

Vk

DVk

Dt
+ Rk −∇ • u

]

.

(47)

The pressure, micro-density, and entropy derivatives are related by the formulas (25)/(37),

from which we obtain:

Dαk

Dt
+ αk

[

1

ρkc2
k

DP

Dt
−

ΓkTk

c2
k

DSk

Dt

]

+ αk∇ • u

= αk

[

Rk − ρk

Nk
∑

i=1

µki

∂Gki

∂P

∣

∣

∣

∣

Sk,~µki

(Rki − Rk)

]

≡ αkRk. (48)

If we use the relation ∇•u = 1
V

DV
Dt

where V = 1/ρ =
N
∑

k=1

µkVk is the total specific volume,

then equation (48) can be rewritten as:

Dαk

Dt
= αk

(

ΓkTk

c2
k

DSk

Dt
−

1

ρkc2
k

DP

Dt
−

1

V

DV

Dt
+ Rk

)

= αk

(

1

Vk

DVk

Dt
−

1

V

DV

Dt
+ Rk

)

. (49)

Remark It is convenient to note at this point that the relation αkV = µkVk(P, Sk),

V =
N
∑

j=1

µjVj(P, Sj) can be used to derive the equation:

dαk =
Vk

V
dµk −

N
∑

j=1

αk

Vj

V
dµj + αk





N
∑

j=1

αj

ρjc2
j

−
1

ρkc2
k



dP

+αk





ΓkTk

c2
k

dSk −

N
∑

j=1

αj

ΓjTj

c2
j

dSj



 ,

dαk =

N
∑

j=1

(

αj

Vk

V
dµk − αk

Vj

V
dµj

)

+





N
∑

j=1

αkαj

( 1

ρjc2
j

−
1

ρkc2
k

)



dP

+
N
∑

j=1

αkαj

(ΓkTk

c2
k

dSk −
ΓjTj

c2
j

dSj

)

.

(50)

It is straightforward to check from the velocity/pressure equilibrium Euler equations, that

this model will be hyperbolic with a single acoustic speed c if the total derivatives of the

equilibrated pressure and total specific volume are related by the equation:

DP

Dt
+ ρ2c2 DV

Dt
= ρc2S,

De

Dt
+ P

DV

Dt
= q,

(51)

where e =
N
∑

k=1

µkek is the total specific internal energy of the mixture and S and q are some yet

to be specified source terms. (Remark: equation (51) is the assumption of a single sound speed;

other hyperbolic assumptions could introduce multiple sound speeds. We do not consider such
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models here, although they are critical in the analysis of flows that are not in pressure and

velocity equilibrium.)

Substituting equation (51) into equation (49) we get:

Dαk

Dt
= αk

Γk

c2
k

Tk

DSk

Dt
+ αk

[

1

ρc2
−

1

ρkc2
k

]

DP

Dt
+ αk (Rk − S) . (52)

Equation (52) suggests a family of models where both volume fraction and entropy advection

are proportional to pressure advection. Without loss of generality, such models can be written

in the form:

Tk

DSk

Dt
= Qk = −

c2
k

Γk

[

1

ρc2
−

1

ρkc2
k

]

(1 − δk

2

)DP

Dt
+ qk,

Dαk

Dt
= αk

[

1

ρc2
−

1

ρkc2
k

]

(1 + δk

2

)DP

Dt
+ αk

(Γk

c2
k

qk + Rk − S
)

.

(53)

The quantities δk = δk(e, V, ~α, ~µ) and qk are modeling terms that are in general complicated

functions (for example see equation (87) for pressure temperature equilibrium) of the thermo-

dynamic flow state or even given by separate dynamic equations. However we will treat these

terms as if they were “pure” source terms (i.e., do not contain derivatives) as might be ap-

propriate when treating the evolution of these terms separately using operator splitting. For

example, in the sequel qk can include heat conduction and radiation heat sources that produce

parabolic modifications of the basic conservation laws.

The mix model terms δk govern the degree to which pressure advection changes either

heat (TdS terms) or volume fraction. When δk is close to one, pressure advection largely

drives relative volumetric changes in the flow components while for δk close to minus one the

main contribution of pressure advection is the change to heat.

It is reasonable to assume that the total heat source is the mass average of the species heat

sources, so we define

q ≡

N
∑

k=1

µkQk. (54)

Examining the first of equations (53) we see that if the composite sound speed is to be inde-

pendent of the heat sources, we require:

S =

N
∑

k=1

αk

(Γkqk

c2
k

+ Rk

)

. (55)

With these assumptions (51) becomes:

DP

Dt
+ ρ2c2 DV

Dt
= ρc2S = ρc2

N
∑

k=1

αk

(Γkqk

c2
k

+ Rk

)

,

De

Dt
+ P

DV

Dt
= q =

N
∑

k=1

µkQk =
N
∑

k=1

µkqk.

(56)

Taking the mass average of the first of equations (53) and summing the second gives two
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formulas for the composite bulk modulus ρc2:

ρc2
N
∑

k=1

αk

Γk

(1 − δk

2

)

=

N
∑

k=1

αk

Γk

(1 − δk

2

)

ρkc2
k,

1

ρc2

N
∑

k=1

αk

(1 + δk

2

)

=

N
∑

k=1

αk

(1 + δk

2

) 1

ρkc2
k

.

(57)

The compatibility condition on the mix model terms δk thus is:

[

N
∑

k=1

αk

(1 + δk

2

)

][

N
∑

k=1

αk

Γk

(1 − δk

2

)

]

=

[

N
∑

k=1

αk

ρkc2
k

(1 + δk

2

)

][

N
∑

k=1

αk

ρkc2
k

Γk

(1 − δk

2

)

]

. (58)

Equation (57) shows that for −1 < δk < 1 both the bulk modulus and its reciprocal are convex

combinations of the component values, while for δk = 1, the reciprocal bulk modulus is a convex

combination of the component values and for δk = −1 the bulk modulus is given by a convex

combination of the component values. Actually, these are convex combinations only for the

case where the Grüneisen exponents are positive, something that need not be true in general.

However this quantity if usually positive for most materials of interest, and we will always

assume in the following that this is the case for the equations of state being considered. In

particular we have that the mixture sound speed is real if all of the component sound speeds

are real and −1 ≤ δk ≤ 1. We also observe that constraint (58) implies that there is a N − 1

dimensional family of possible model terms, i.e., specifying functional forms or any subset of

N − 1 of these quantities determines the remaining one.

If we combine the second of equation (56) with the conservation laws of total mass and

momentum, we obtain a conservation law for total energy:

∂
[

ρ
(

e + 1
2u2
)]

∂t
+ ∇ •

[

ρu
(

e +
1

2
u2
)

+ Pu

]

= ρu • b + ρq. (59)

We will henceforth regard (59) as a fundamental conservation law. We thus can rewrite system

(41) as the equivalent system:

Conservation of Subcomponent Mass:

∂αkαkiρki

∂t
+ ∇ • (αkαkiρkiu) = αkαkiρkiRki, i = 1, · · · , Nk. (60)

Conservation of Component Mass:

∂αkρk

∂t
+ ∇ • (αkρku) = αkρkRk,

∂αkρk

∂t
+ ∇ • (αkρku) =

Nk
∑

i=1

(∂αkαkiρki

∂t
+ ∇ • (αkαkiρkiu)

)

,

αkρkRk =

Nk
∑

i=1

αkαkiρkiRki.

(61)
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Conservation of Total Mass:

∂ρ

∂t
+ ∇ • (ρu) = 0,

∂ρ

∂t
+ ∇ • (ρu) =

N
∑

k=1

∂αkρk

∂t
+ ∇ • (αkρku) ,

N
∑

k=1

αkρkRk = 0.

(62)

Conservation of Total Momentum:

∂ρu

∂t
+ ∇ • (ρu ⊗ u) + ∇P = ρb. (63)

Conservation of Total Energy:

∂
[

ρ
(

e + 1
2u2
)]

∂t
+ ∇ •

[

ρu
(

e +
1

2
u2
)

+ Pu

]

= ρu • b + ρq. (64)

Heat/Volume Advection:

Tk

DSk

Dt
=

Dek

Dt
+ P

DVk

Dt
=

Vk

Γk

[

ρkc2
k − ρc2

]

(1 − δk

2

)

(∇ • u − S) + qk,

Dαk

Dt
= −αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

(∇ • u − S) + αk

(

Γk

c2
k

qk + Rk −
N
∑

j=1

αj

(Γjqj

c2
j

+ Rj

)

)

.

(65)

System (60)–(65) explicitly expresses conservation of mass, momentum, and energy and implic-

itly the advection of entropy and/or volume fraction.

The above derivations allows to us to derive the alternate formulation of system (41) from

which the characteristic analysis is easily derived:

Dµk

Dt
= µkRk,

Dµki

Dt
= µki (Rki − Rk),

Tk

DSk

Dt
= −

c2
k

Γk

[

1

ρc2
−

1

ρkc2
k

]

(1 − δk

2

)DP

Dt
+ qk,

DP

Dt
+ ρc2∇ • u = ρc2S,

Du

Dt
+

∇P

ρ
= b.

(66)

System (66) is equivalent to the system in terms of the volume fractions:

Dµk

Dt
= µkRk,

Dµki

Dt
= µki (Rki − Rk),

Dαk

Dt
= αk

[

1

ρc2
−

1

ρkc2
k

]

(1 + δk

2

)DP

Dt
+ αk

(Γk

c2
k

qk + Rk − S
)

,

DP

Dt
+ ρc2∇ • u =

DP

Dt
+ ρ2c2 DV

Dt
= ρc2S,

De

Dt
+ P

DV

Dt
= q,

Du

Dt
+

∇P

ρ
= b.

(67)
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Either of the versions in systems (66) or (67) imply that if the heat and reaction terms are

either defined as constitutive functions of the flow state, or are determined by independent

dynamically equations (not involving state derivatives), then such a model has 2N + D − 1

linearly degenerate eigenvalues with characteristic speed λ = u • ξ in the direction of the unit

vector ξ, and two wave families with speeds λ = u • ξ ± c.

4.1 Constitutive Laws

If we assume that the reaction terms Rk, Rki, the heat sources qk, and the mix model

coefficients δk are either constitutive functions of flow state (microdensities, pressure, volume

fractions, mass fractions, temperatures, or equivalent) or are given by additional dynamical

equations not being considered here, and that each component is a mixture of Nk, k = 1, · · · , N ,

then system (60)–(65) or its characteristic forms (66) or (67) consist of
N
∑

k=1

Nk + N + D inde-

pendent dynamic equations (Table 1). Here D is the spatial dimension of the flow.

Table 1 Partial Differential Equation Count

System (60)–(65)

Quantity Number of Independent Equations

Species Mass
NP

k=1

Nk

Momentum D

Total Energy 1

Species Heat/Volume Fraction N − 1

Total
NP

k=1

Nk + N + D

System (66)

Quantity Number of Independent Equations

Species Mass Fraction N − 1

Subspecies Mass Fraction
NP

k=1

Nk − N

Species Heat N

Pressure Advection 1

Velocity D

Total
NP

k=1

Nk + N + D

System (67)

Quantity Number of Independent Equations

Species Mass Fraction N − 1

Subspecies Mass Fraction
NP

k=1

Nk − N

Species Volume Fraction N − 1

Pressure Advection 1

Specific Internal Energy Advection 1

Velocity D

Total
NP

k=1

Nk + N + D
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The variables used to specify the flow are described in Table 2.

Table 2 Flow State Specification Variables

Variable Type Names Count/Number

Subspecies Thermodynamic State Tki, Pki, ρki, eki, Ski, 2
NP

k=1

Nk

Species Mass Fraction µk N − 1

Sub-species Mass Fraction µki

NP
k=1

Nk − N

Species Volume Fraction αk N − 1

Sub-species Volume Fraction αki

NP
k=1

Nk − N

Species Total Density/Specific Volume ρk, Vk = 1

ρk
N

Species Specific Internal Energy ek N

Species Pressure Pk N

Species Temperature Tk N

Total Density/Specific Volume ρ, V = 1

ρ
1

Total Specific Internal Energy e 1

Total Pressure P 1

Velocity u D

Total 4
NP

k=1

Nk + 4N + D + 1

From these two tables we see that we require an additional 3
N
∑

k=1

Nk + 3N + 1 equations

to close the system. These equations are provided by the constitutive relations in described in

Table 3.

Table 3 Constitutive Closure Relations

Equation Description Count/Number

Total Energy e =
NP

k=1

ek 1

Total/Species Mass αkρk = µkρ N

Species/Sub-species Mass αkiρki = µkiρk

NP
k=1

Nk

Species/Sub-species Specific Internal Energy ek =
NkP
i=1

µkieki N

Sub-species Thermodynamic Equilibrium Pressure/Temperature or 2
NP

k=1

Nk

Molecular Mix equilibrium

Pki = Pk, Tki = Tk

Single Pressure P = Pk N

Total 3
NP

k=1

Nk + 3N + 1

An examination of our partial differential equation systems together with the constitutive

closures shows that we basically need to compute the equilibrated pressure as a function of total

density, mass fractions (species + subspecies), and either the species specific entropies, specific
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internal energies, or volume fractions. The sub-species equilibrium assumptions imply that we

can write the species pressure and specific internal energies in any one of several equivalent

ways:

Pk = Pk(Vk, Sk, ~µk = (µk1, · · · , µkNk
)) = Pk

(αkV

µk

, Sk, ~µk

)

,

ek = ekVk, Sk, ~µk) = ek

(αkV

µk

, Sk, ~µk

)

,

(68)

Pk = Pk(Vk, ek, ~µk) = Pk

(αkV

µk

, ek, ~µk

)

, (69)

ek = ek(Vk, Pk, ~µk) = ek

(αkV

µk

, Pk, ~µk

)

. (70)

The common pressure can be found as a solution in terms of the desired variables of the

system of N + 1 equations:

P = Pk(·),

e =

N
∑

k=1

µkek.
(71)

If we further assume that the separate material equations of state can be expressed through an

incomplete equation of state formulation, Pk = Pk(Vk, ek, ~µk), then system (71) becomes:

P = Pk(Vk, ek, ~µk) = Pk

(αkV

µk

, ek, ~µk

)

, k = 1, · · · , N,

e =

N
∑

k=1

µkek,

(72)

which yields a solution:

P = P (V, e, ~α, ~µ),

ek = ek(V, e, ~α, ~µ).
(73)

Newton’s scheme provides one method to solve system (72), linearizing this system with

respect to pressure and specific internal energy we obtain the iteration:

Pn+1 =

N
∑

k=1

αk

Γn
k

Pn
k

N
∑

k=1

αk

Γn
k

, Pn
k = Pk (Vk, en

k , ~µk) , Γn
k = Γk (Vk, en

k , ~µk) ,

en+1
k = en

k + Vk

Pn+1 − Pn
k

Γn
k

= en
k + Vk

Γn

Γn
k

N
∑

j=1

αj

Γn
j

[

Pn
j − Pn

k

]

,

1

Γn
=

N
∑

k=1

αk

Γn
k

.

(74)

System (74) shows that it is sufficient to solve for the component specific internal energies

and then compute the common pressure using the average of the component pressures weighted

by the ratio of the given volume fraction and Grüneisen exponent. The iteration can be started
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using the initial guess e0
k = e, k = 1, · · · , N. It is useful to note that if all of the components

have equations of state of the Mie-Grüneisen type

Pk = Pr,k (Vk) +
Γk (Vk)

Vk

(ek − er,k (Vk)) , (75)

then the linear relation between pressure and specific internal energy for fixed specific volume

implies that the Newton method (74) converges to the exact solution:

P = Pr (V, ~α, ~µ) +
Γ (V, ~α, ~µ)

V
[e − er (V, ~α, ~µ)] ,

ek (V, ~α, ~µ) = er,k (Vk) +
Vk

Γk (Vk)
[P − Pr,k (Vk)] ,

Vk =
αkV

µk

,

1

Γ (V, ~α, ~µ)
=

N
∑

k=1

αk

Γk (Vk)
,

Pr (V, ~α, ~µ) = Γ (V, ~α, ~µ)

N
∑

k=1

αkPr,k (Vk)

Γk (Vk)
,

er (V, ~α, ~µ) =

N
∑

k=1

µker,k (Vk),

(76)

in a single iteration. In practice equations of this type are extremely common (indeed analytic

equations are almost always of this type), and in general the Grüneisen exponent tends to be

slowly varying for fixed specific volume so one would expect that iteration (74) would usually

converge quickly even for the most general equation of state mixtures.

It is convenient to compute the partial derivatives of the pressure solution of system (72).

We leave it as an exercise to show that:

∂P

∂e

∣

∣

∣

∣

V,~α,~µ

= ρΓ,
1

Γ
=

N
∑

k=1

αk

Γk

,

∂P

∂V

∣

∣

∣

∣

e,~α,~µ

= ρΓ

[

P −

N
∑

k=1

αkρkc2
k

Γk

]

,

∂P

∂αk

∣

∣

∣

∣

V,e,αj 6=k,~µ

= Γ

[

P −
ρkc2

k

Γk

]

,

∂P

∂µk

∣

∣

∣

∣

V,e,~α,µj 6=k

= −ρΓ

[

ek + VkP −
c2
k

Γk

]

.

(77)

Derivatives of the component specific internal energies, temperatures, and specific volumes

can be derived from equation (77) using the relations:

dVk

Vk

+
dµk

µk

=
dV

V
+

dαk

αk

,

dek =
∂ek

∂P

∣

∣

∣

∣

Vk

dP +
∂ek

∂Vk

∣

∣

∣

∣

P

dVk =
Vk

Γk

dP +

[

c2
k

Γk

− PVk

]

dVk

Vk

dTk =
∂Tk

∂P

∣

∣

∣

∣

Vk

dP +
∂Tk

∂Vk

∣

∣

∣

∣

P

dVk =
Vk

ΓkCV,k

dP +
c2
k − Γ2

kCV,kTk

ΓkCV,k

dVk

Vk

.

(78)
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Equation (77) implies that the total derivative of the common pressure is given by:

DP

Dt
= −Γ

N
∑

k=1

αk

ρkc2
k

Γk

1

V

DV

Dt
− Γ

N
∑

k=1

ρkc2
k

Γk

Dαk

Dt
,

DP

Dt
+ Γ

N
∑

k=1

ρkc2
k

Γk

(Dαk

Dt
+ αk∇ · u

)

= 0.

(79)

5 Specific Models (single sound speed)

Flow equations of the form (60)–(65) include several popular multi-material flow models.

Equation (58) implies that we have N − 1 degrees of algebraic freedom in selecting parameters

for models of this type. We will not pursue further possible models for the parameters δk

except to note that this framework includes the pressure-temperature equilibrium flow model

and points out an interesting duality between two popular multi-temperature models:

Uniform Strain

δk = −1, k = 1, · · · , N,
Dαk

Dt
= αk

(Γk

c2
k

qk + Rk − S
)

,

Γk

c2
k

Tk

DSk

Dt
= −

[

1

ρc2
−

1

ρkc2
k

]

DP

Dt
+

Γk

c2
k

qk =

[

1 −
ρc2

ρkc2
k

]

∇ • v +
Γk

c2
k

qk,

ρc2 =

N
∑

k=1

αk

Γk
ρkc2

k

N
∑

k=1

αk

Γk

.

(80)

Thermal Isolation

δk = +1, k = 1, · · · , N,

Tk

DSk

Dt
= qk,

Dαk

Dt
= αk

[

1

ρc2
−

1

ρkc2
k

]

DP

Dt
+ αk

(Γk

c2
k

qk + Rk − S
)

= αk

[

ρc2

ρkc2
k

− 1

]

∇ • v + αk

(Γk

c2
k

qk + Rk − S
)

,

∂αk

∂t
+ ∇ • (αkv) = αk

ρc2

ρkc2
k

∇ • v + αk

(Γk

c2
k

qk + Rk − S
)

,

1

ρc2
=

N
∑

k=1

αk

ρkc2
k

.

(81)

One immediate observation of equation (80) is that the uniform strain model only defines

the composite bulk modulus as a convex combination of the species bulk moduli in regions

where all of the Grüneisen exponents are positive. We can expect difficulties with this model

for materials that can assume negative Grüneisen in the flow of interest.

Examining equation (80) we see that a compressive wave (DP
Dt

> 0) repartitions entropy by

taking heat from species with bulk moduli greater than the composite bulk modulus and assign-

ing it to species with bulk moduli less than the composite value. Since this model should only be
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used for mixtures with positive Grüneisen exponents, this means that compressive waves cause

more compressible (small bulk modulus) materials to relatively gain heat and less compressible

materials to relatively cool. Similarly we see from (81) that for thermally isolated mixtures

the less compressible materials gain relative volume at the expense of the more compressible

species. Of course, neither extreme can be completely correct since the differential response

of the separate materials to compression waves should result in an interaction between mate-

rials that exchanges both heat (via P-V work between materials) and volume (via differential

compression). Indeed a physical basis for the selection of the modeling parameters δk could be

based on an attempt to approximate these interactions. It is also interesting to note that if we

wish to preserve the conditions that compressible materials relatively gain heat and lose volume

in a compression wave, then this implies that the model coefficients satisfy −1 ≤ δk ≤ 1.

Pressure-Temperature Equilibrium

Since pressure-temperature equilibrium implies a single mixture sound speed, this model

satisfies equation (51) and so should be of the form (60)–(65). To establish this explicitly, we

first note that thermodynamics relates changes in pressure, temperature, and entropy for a pure

material:

TdS = −TβV dP + CP dT. (82)

Here β is the coefficient of thermal expansion and CP is the specific heat at constant pressure.

Next, using the P-T equilibrium entropy equation

N
∑

k=1

µkT
DSk

Dt
= 0, (83)

we obtain:

T
N
∑

k=1

µkVkβk

DP

Dt
= T

N
∑

k=1

αkβkV
DP

Dt
= TβV

DP

Dt
=

N
∑

k=1

µkCP,k

DT

Dt
= CP

DT

Dt
. (84)

Where β is the volume fraction weighted sum of the species βk, the mixture specific heat at

constant pressure is the mass fraction weighted sum the species specific heats, and the total

specific volume V is the mass fraction weighted sum of the species specific volumes. Equations

(82) and (84) then imply that for pressure-temperature equilibrium flows, the separate species

specific entropies and volume fractions evolve as:

T
DSk

Dt
= CP,kT

[

βV

CP

−
βkVk

CP,k

]

DP

Dt
,

Dαk

Dt
= αk

{

(βk − β) ΓT + ρc2 (KT − KT,k)
} 1

ρc2

DP

Dt
.

(85)

Comparing (85) with (53) we obtain:

1 + δk

2
=

(KT − KT,k) + ΓT
ρc2 (βk − β)

1
ρc2 − 1

ρkc2

k

= (1 + ΓβT )
(KT − KT,k) + ΓT

ρc2 (βk − β)

(KT − KT,k) + T
ρkc2

k

(Γkβk − Γβ)
. (86)

A model of the form (53) can be obtained by rewriting (86) as:

1 + δk

2
= (1 + ΓeqβeqTeq)

(KT,eq − KT,k) +
ΓeqV

c2
eq

(βkTk − βeqTeq)

(KT,eq − KT,k) + Vk

c2

k

(ΓkβkTk − ΓeqβeqTeq)
. (87)
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6 Shock Structure

The issue of shocks for the system (60)–(65) is problematic since it is not in conservation

form. It is easy to show that for bounded source terms, the conservation of species mass, total

momentum and total energy yield the Hugoniot equations:

s [ρ] = [ρu • n] , s [µkρ] = [µkρu • n] ,

s [ρu] = [ρu • nu + Pn] ,

s

[

ρ
(

e +
1

2
u2
)

]

=

[

u • n
(

ρ
(

e +
1

2
u2
)

+ P
)

]

.

(88)

Here n is the unit normal to the wave front, and s is the front velocity in the normal direction,

and the superscripts 0 and 1 denote the flow state ahead and behind the wave, respectively.

From (88) we then derive:

ρ0
(

u0 • n− s
)

= ρ1
(

u1 • n− s
)

= −m,

[µk] m = 0,

m [u] • n = [P ] , m [u − (u • n)n] = 0,

m
{

[e] + P̄ [V ]
}

= 0.

(89)

The quantity m is the mass flux across the wave. If the mass flux is non-zero, we obtain the

usual shock Hugoniot equation:

e1 − e0 =
P 1 + P 0

2

(

V 0 − V 1
)

,

µ1
k = µ0

k,

[u] + m [V ]n = 0, m [u] = [P ]n,

s = u0 • n + V 0m = u1 • n + V 1m.

(90)

Equations (90) imply m2 = P 1−P 0

V 0−V 1 .

Since the total specific internal energy and specific volume satisfy e =
N
∑

k=1

µkek and V =

N
∑

k=1

µkVk, the continuity of mass fractions across a shock gives us the Hugoniot equation for the

mixture:
N
∑

k=1

µk

[

ek (P, Sk) − e0
k −

P + P 0

2

(

V 0
k − Vk(P, Sk)

)

]

= 0. (91)

For simplicity of notation we have dropped the superscript for the quantities behind the shock,

which in the following will also correspond to the non-superscripted quantities. Equation (91)

is under-determined for more than one material and thus does not uniquely define the thermo-

dynamic state behind the shock. Since the mass fractions are constant across a shock, we have

N − 1 degrees of freedom to determine the specific entropies (or equivalent) behind a shock

given the behind shock pressure. For models of the form (51) solutions to (91) should be further

constrained to satisfy the Lax stability criteria:

u0 • n + c0 < s < u • n + c, 0 < m,

u • n− c < s < u0 • n − c0, m < 0.
(92)
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Using the formula for the shock speed from equation (90) we see that the Lax stability condition

is equivalent to the inequality:

ρ0c0 < |m| < ρc. (93)

In particular inequality (93) implies that the mass flux across the shock should converge to the

acoustic impedance ρc as the shock strength goes to zero.

We note that system (91) is a convex combination of individual species Hugoniot equations,

and an obvious solution is given by choosing the separate specific entropies to satisfy the

single species Hugoniot equations. However this cannot be the case in general, for example

for P-T equilibrium mix the flow behind the shock is further constrained to be in temperature

equilibrium which would be inconsistent with the separate Hugoniot temperatures.

However the separate Hugoniot solution for (91) does seem reasonable for the thermal

isolation model. For this model the mixture sound speed is:

1

ρ2c2
=

N
∑

k=1

µk

ρ2
kc2

k

. (94)

While the separate Hugoniot mass flux satisfies:

1

m2
=

V 0 − V

P − P 0
=

N
∑

k=1

µk

V 0
k − VH,k

(

P, P 0, V 0
k

)

P − P 0
=

N
∑

k=1

µk

m2
H,k (P, P 0, V 0

k )
. (95)

In Menikoff and Plohr [18], section IV.A it is shown that for materials with positive fundamental

derivative of gas dynamics [35, 36]:

G ≡
1

2

V 2

ρc2

∂2P

∂V 2

∣

∣

∣

∣

S

. (96)

The Hugoniot mass flux satisfies for P 0 < P :

ρ0
kc0

k < |mk| < ρkck,

1

(ρkck)
2 <

1

m2
k

<
1

(ρ0
kc0

k)
2 .

(97)

Taking the mass average of the second of inequality (97) implies the Lax condition:

ρ0c0 < |m| < ρc. (98)

In addition, Menikoff and Plohr (section IV.B) also show that for positive G, the specific

entropy increases with the pressure behind the shock and hence the mass averaged entropy

increases across a shock for such mixtures. In view of the above discussion and since most

common materials have a positive fundamental derivative of gas dynamics for almost their

entire equation of state domain; we will restrict our attention to mixtures of components all of

which satisfy Gk > 0 for the thermodynamic flow domain being considered.

A problem with the separate Hugoniot solution is that each material has a different shock

velocity and hence velocity equilibrium may not be satisfied behind the shock. The separate

Hugoniot model for thermal isolation is essentially the statement that the interaction between

the waves produced by refractions and reflections through the subgrid interfaces equilibrates
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the velocity to the value given by equation (90) without substantially changing the pressure

behind the shock.

The general case for models of the form (53) is even more problematic. For example, the

natural assumption for the uniform strain Hugoniot would be to enforce the condition [αk] = 0

across shocks. Indeed this condition must be asymptotically satisfied for weak shocks in order

to preserve the continuity of the shock locus with the rarefaction locus at zero strength shocks.

With this assumption we see that the micro-specific volume jump condition becomes:

αk [V ] = µk [Vk] , (99)

and our Hugoniot condition is:

N
∑

k=1

µkek

(

P, V 0
k + αk

µk
(V − V 0t)

)

− e0 =
P + P 0

2
(V 0 − V ). (100)

If for fixed αk,µk and V 0
k we define an internal energy:

ē(P, V ) =

N
∑

k=1

µkek

(

P, V 0
k + αk

µk
(V − V 0)

)

, (101)

we see that equation (100) is simply the Hugoniot equation for the equation of state defined by

(101) with ahead state
(

P 0, V 0
)

. It is a straightforward exercise to show that the sound speed

for the equation of state given by (101) is the same as the uniform strain sound speed at the

given mass and volume fractions:

ρc2

Γ
=

N
∑

k=1

αk

Γk

ρkc2
k,

1

Γ
=

N
∑

k=1

αk

Γk

. (102)

Here Γ is the Grüneisen exponent for EOS (101). As previously stated, the mixture sound

speed formula suggests that the uniform strain mixture model is most reasonable for positive

Grüneisen exponents, which we assume in the following. The definition of the adiabatic expo-

nent γ = c2

PV
shows that the Grüneisen and adiabatic exponents for EOS (101) are related to

the component values by the equations:

γ

Γ
=

N
∑

k=1

αk

γk

Γk

,
1

Γ
=

N
∑

k=1

αk

1

Γk

. (103)

A straightforward application of equation (40) in Menikoff and Plohr [18] shows that the fun-

damental derivative of gas dynamics can be written:

G =
Γ

2

{

γ + 1

Γ
+

(

P
∂γ/Γ
∂P

∣

∣

∣

∣

V

−
V

γ

∂γ/Γ
∂V

∣

∣

∣

∣

P

)

− γ

(

P
∂1/Γ
∂P

∣

∣

∣

∣

∣

V

−
V

γ

∂1/Γ
∂V

∣

∣

∣

∣

∣

P

)}

. (104)

Using equation (104) we then find that the fundamental derivative of gas dynamics for EOS

(101) is given by:

G = Γ

N
∑

k=1

αk

Γk

Gk +
Γ

2

N
∑

k=1

αk (γ − γk)

[

Vk

γγk

∂γk/Γk

∂Vk

∣

∣

∣

∣

∣

P

− P
∂1/Γk

∂P

∣

∣

∣

∣

∣

Vk

]

. (105)
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Two easy cases are now obvious, for perfect gases γ > 0 and Γ = γ − 1 are constant, while

for stiffened gamma law gases [15] Γ > 1 is constant while γ = (Γ + 1) P+P∞

P
is independent

of specific volume (P∞ being an EOS parameter). Thus in both cases we get that the mixture

fundamental derivative is positive and in fact is equal to Γ
2 .

However for the general case, it is not obvious at all that positivity of the component

fundamental derivatives imply positivity of the mixture fundamental derivative, raising the

possibility that such mixtures could exhibit non-convex type behaviors such as shock splitting

as described in the Menikoff and Plohr [18] paper (see section V).

7 Application: Radiation Hydrodynamics

We consider a radiation hydrodynamic flow with pressure and velocity equilibrium between

material components. For simplicity we assume non-reactive components and a single radiation

energy the interacts with all of the material components and furthermore we assume that

the radiation flow can be modeled in the diffusion limit [19, 40]. The conservation of mass,

momentum, and energy laws then become:

∂αkρk

∂t
+ ∇ · (αkρk) = 0,

∂ρu

∂t
+ ∇ · (ρu⊗ u) + ∇ (P + Pr) = ρg,

∂
[

ρ
(

1
2u2 + e

)

+ Er

]

∂t
+ ∇ ·

[

ρu
(1

2
u2 + e

)

+ Eru + (P + Pr)u + Fr

]

= ρu · g.

(106)

Here Er is the radiation energy density (units: energy/volume), Pr is the radiation pressure,

and Fr is the radiation flux. Expanding the energy conservation component (line three of

equation (106)) and using the mass and momentum conservation laws we can derive:

ρ

[

De

Dt
+ P

DV

Dt

]

+
∂Er

∂t
+ ∇ · [Eru + Fr] + Pr∇ · u = 0,

∂Er

∂t
+ ∇ · [Eru + Fr] + Pr∇ · u = −ρ

[

De

Dt
+ P

DV

Dt

]

= −ρq.

(107)

We can then rewrite equation (106) is a form similar to that of equation (41) by defining

b = g − ∇Pr

ρ
and ∂Er

∂t
+ ∇ · [Eru + Fr] + Pr∇ · u = −ρq.

System (106) is closed by specifying evolution equations for the specific entropy or volume

fractions of each component as in equation (53).

Tk

DSk

Dt
= −

c2
k

Γk

[

1

ρc2
−

1

ρkc2
k

]

(1 − δk

2

)DP

Dt
+ qk ⇔

Dαk

Dt
= αk

[

1

ρc2
−

1

ρkc2
k

]

(1 + δk

2

)DP

Dt
+ αk

(Γk

c2
k

qk − S
)

,

DP

Dt
+ ρc2∇ · u = ρc2S, S =

N
∑

k=1

αk

Γkqk

c2
k

,
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ρc2
N
∑

k=1

αk

Γk

(1 − δk

2

)

=

N
∑

k=1

αk

Γk

(1 − δk

2

)

ρkc2
k ⇔

1

ρc2

N
∑

k=1

αk

(1 + δk

2

)

=

N
∑

k=1

αk

(1 + δk

2

) 1

ρkc2
k

.

(108)

Using the evolution equation for material pressure in (66) to substitute for the total derivative

of pressure in the first two equations, we can rewrite this system as:

Tk

DSk

Dt
=

c2
k

Γk

[

1 −
ρc2

ρkc2
k

]

(1 − δk

2

)

∇ · u −
c2
k

Γk

[

1 −
ρc2

ρkc2
k

]

(1 − δk

2

)

S + qk,

Dαk

Dt
= −αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

∇ · u + αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + αk

(Γk

c2
k

qk − S
)

,

P = P (e, V, ~α, ~µ) , ek = ek(e, V, ~α, ~µ), µkVk = αkV, Tk = Tk (ek, Vk) .

(109)

Here the constitutive relations for the pressure, component specific internal energies, and tem-

peratures are given by the solution to system (68)–(70) together with the component equation

of state.

The closure formulas in equation (109) together with the relations dek + PdVk = TkdSk,

e =
N
∑

k=1

µkek, V =
N
∑

k=1

µkVk, and Dµk

Dt
= 0 allow us to rewrite equation (107) as:

∂Er

∂t
+ ∇ · [Eru + Fr] + Pr∇ · u = −ρq,

∂
[

ρ
(

1
2u2 + e

)]

∂t
+ ∇ ·

[

ρu
(1

2
u2 + e

)

+ Pu

]

+ u · ∇Pr = ρu · g + ρq.

(110)

This version will be useful in the operator split discussion below.

Our primary interest will be for the thermal isolation (δk = 1) or uniform strain (δk = −1)

cases, although this class of models also includes temperature equilibrium (equation (87)) as a

special case.

Up to now, this discussion is purely formal; it remains to specify the form of the heat source

terms qk. We assume a very simply phenomenological model for the interaction of the radiation

field with the material components, namely that the radiation field interacts with each material

component separately via a non-equilibrium relaxation between the material temperature field

and the radiation field:

qk = −VkcLκk (Vk, Tk)
(

aRT 4
k − Er

)

. (111)

Here cL is the speed of light, aR = 7.56 × 10−15 erg/cm3/ deg4 is the radiation constant, and

κk (Vk, Tk) is the absorption mean opacity, which we regard as a constitutive function of the

component specific volume and temperature. For this simple model, we take Pr = 1
3Er and

a gray diffusion radiation flux Fr = − cL

3χ̄
∇Er where χ̄ =

N
∑

k=1

αkχ̄k (Vk, Tk) is the total mean

opacity which is computed as the volume average of the component mean opacities regarded

as constitutive functions of the component specific volume and temperature. This model is a

straightforward generalization to multiple component temperatures of the gray diffusion mate-

rial equilibrium model described in Mihalas&Mihalas [19] (§97, equations 97.70-97.94), and as

such may be subject to various physical limitations not discussed further here.
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With these closures, system (106)/(111) might be solved using operator splitting between

the hydrodynamic component and the radiation component. Specifically, the hydrodynamic

component becomes:

∂αkρk

∂t
+ ∇ · (αkρk) = 0,

∂ρu

∂t
+ ∇ · (ρu⊗ u) + ∇P = ρg,

∂
[

ρ
(

1
2u2 + e

)]

∂t
+ ∇ ·

[

ρu
(1

2
u2 + e

)

+ Pu

]

= ρu · g,

∂Er

∂t
+ ∇ · (uErt) = 0,

Dαk

Dt
= αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

∇ · u,

P = P (e, V, ~α, ~µ) , ek = ek (e, V, ~α, ~µ) , µkVk = αkV, Tk = Tk (ek, Vk) .

(112)

While the radiation component is:

∂αkρk

∂t
= 0,

∂ρu

∂t
+ ∇Pr = 0,

∂
[

ρ
(

1
2u2 + e

)]

∂t
+ u · ∇Pr = ρq,

∂Er

∂t
+ ∇ · Fr + Pr∇ · u = −ρq,

∂αk

∂t
= αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + αk

(Γk

c2
k

qk − S
)

,

P = P (e, V, ~α, ~µ), ek = ek (e, V, ~α, ~µ) , µkVk = αkV, Tk = Tk (ek, Vk)?

(113)

With the source term q given by:

q =

N
∑

k=1

µkqk = −

N
∑

k=1

µkVkcLκk (Vk, Tk)
(

aRT 4
k − Er

)

= −V

N
∑

k=1

αkVkcLκk (Vk, Tk) (aRT 4
k − Er) = −V cLκ

(

aRT̃ 4 − Er

)

,

κ =

N
∑

k=1

αkκk (Vk, Tk), κT̃ 4 =

N
∑

k=1

αkκk (Vk, Tk)T 4
k .

(114)

Since ρ =
N
∑

k=1

αkρk, we immediately see that, for the radiation operator split component, density

is constant in time. Also, since αkρk = µkρ we see that the mass fractions are also constant in

time for the radiation step. Using these two observations together with the momentum equation

in (113) allows us to rewrite the radiation energy update equation as:

∂αkρk

∂t
= 0,
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ρ
∂u

∂t
+ ∇Pr = 0,

ρ
∂e

∂t
= ρq,

∂Er

∂t
+ ∇ ·Fr + Pr∇ · u = −ρq,

∂αk

∂t
= αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + αk

(Γk

c2
k

qk − S
)

,

P = P (e, V, ~α, ~µ) , ek = ek (e, V, ~α, ~µ) , µkVk = αkV, Tk = Tk (ek, Vk)?

(115)

System (115) is then further split into hyperbolic and parabolic components.

Hyperbolic component

ρ
∂u

∂t
+ ∇Pr = 0,

∂Er

∂t
+ Pr∇ · u = 0,

∂ρ

∂t
= 0.

(116)

Since density is constant in time for system (116), and Pr = 1
3Er, this system equivalent to a

2 × 2 hyperbolic system with characteristics λ = ± 1
3

√

Er

ρ
.

Parabolic component

∂V

∂t
= 0,

∂µk

∂t
= 0,

∂e

∂t
= q,

∂Er

∂t
+ ∇ · Fr = −ρq,

∂αk

∂t
= αk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + αk

(Γk

c2
k

qk − S
)

.

(117)

This system is closed by the pressure equilibrium assumption (68)–(70) that gives all of the

thermodynamic quantities (e.g. sound speeds and Grüneisen exponents) as functions for the

total specific volume, total specific internal energy, the mass fractions, and the volume fractions.

In addition the source terms q and S are also functions of the radiation energy via the formulas

(111) and the definition of S in equation (108).

One can write direct evolution equations for the component specific volumes, specific en-

tropies, and temperatures in (117). Using the equation for volume fraction update in (117)

together with the constitutive relations for the equation of state derivatives in equation (77) we

can derive:

∂P

∂t
= ρc2S,

∂Vk

∂t
= Vk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + Vk

(Γk

c2
k

qk − S
)

,

Tk

∂Sk

∂t
= −

c2
k

Γk

[

1 −
ρc2

ρkc2
k

]

(1 − δk

2

)

S + qk,
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∂ek

∂t
= Tk

∂Sk

∂t
− P

∂Vk

∂t
,

∂Tk

∂t
= −

ΓkTk

Vk

∂Vk

∂t
+

1

CV,k

Tk

∂Sk

∂t
,

∂ek

∂t
= CV,k

∂Tk

∂t
+

[

CV,kTk −
PVk

Γk

]

Γk

Vk

∂Vk

∂t
.

If we differentiate the expression for T̃ in equation (114) we obtain:

4κT̃ 3dT̃ =

N
∑

k=1

αkκk

{[

4T 4
k + (T 4

k − T̃ 4)
∂ log κk

∂ log Tk

]

dTk

Tk

+(T 4
k − T̃ 4)

[

dµk

µk

+

[

1 +
∂ log κk

∂ log Vk

]

dVk

Vk

]}

. (118)

This expression when used in combination with equations (118) can be used to derive an explicit

time update formula for the opacity averaged temperature:

1

T̃

∂T̃

∂t
=

N
∑

k=1

αkκk

κ

{

T 4
k

T̃ 4

( qk

CV,kTk

− Γk

(Γk

c2
k

qk − S
)

−
[

1 −
ρc2

ρkc2
k

]( c2
k

ΓkCV,kTk

(1 − δk

2

)

+Γk

(1 + δk

2

))

S +
(T 4

k − T̃ 4)

4T̃ 4

( ∂ log Vkκk

∂ log Sk

∣

∣

∣

∣

Vk

qk

SkTk

+
∂ log Vkκk

∂ log Vk

∣

∣

∣

∣

Sk

(Γk

c2
k

qk − S
)

+

[

1 −
ρc2

ρkc2
k

]

( ∂ log Vkκk

∂ log Vk

∣

∣

∣

∣

Sk

(1 + δk

2

)

−
∂ log Vkκk

∂ log Sk

∣

∣

∣

∣

Vk

c2
k

ΓkSkTk

(1 − δk

2

))

S
)

}

. (119)

This complicated expression can be useful in assessing the relative contributions of the separate

components in the rate of change of the opacity averaged temperature.

Equation (117) is still quite complicated. In order to simplify the solver we propose one

more operator split step:

Fixed-Radiation Volume Advection

∂V

∂t
= 0,

∂µk

∂t
= 0,

∂e

∂t
= 0,

∂Er

∂t
= 0,

∂Vk

∂t
= Vk

[

1 −
ρc2

ρkc2
k

]

(1 + δk

2

)

S + Vk

(Γk

c2
k

qk − S
)

,

αkVk = µkV, e =

N
∑

k=1

µkek, P = Pk (ek, Vk) .

(120)

Fixed-Volume-Fraction Radiation Diffusion

∂V

∂t
= 0,

∂µk

∂t
= 0,

∂Vk

∂t
= 0,

∂αk

∂t
= 0,

∂e

∂t
= q,

∂Er

∂t
+ ∇ ·Fr = −ρq,

αkVk = µkV, e =

N
∑

k=1

µkek, P = Pk (ek, Vk) .

(121)
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The solution to system (120) gives updated component thermodynamic quantities as functions

of the fixed in time (but spatially variable) radiation energy. The closure conditions in the

equation of (121) give the thermodynamic variables as functions of the single total specific

internal energy for known specific volumes.

8 Conclusion

The main intent of this research note has been to summarize the basic mathematic con-

sequences of assuming a single pressure/velocity model for compressible flows. We saw that

such models can be characterized as a N − 1 parameter family of flow models in the number

of separate material components, corresponding to consistency conditions for two formulas for

the system sound speed. In particular three special cases were described, pressure-temperature

equilibrium, thermal isolation and uniform strain. The derivations of the characteristic struc-

ture of these models will be useful in the design and implementation of compressible flow solvers

for such systems, but specific instances of such implementations are not the focus of this note.

It is hoped that the formulas derived here will be helpful in clarifying the connection of such

models in applications.
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